55 research outputs found

    MODERN VIEWS ON MOLECULAR MECHANISMS OF PLAGUE PATHOGENESIS

    Get PDF
    The review presents brief analysis of the published over the past decade results of investigations devoted to studies of currently known molecular action mechanisms of Yersinia pestis virulence factors. Analyzed are different Y. pestis components, synthesized by the bacteria at four stages of infectious process in case of bubonic plague: in derma, lymph nodes, parenchymal organs, and blood. Described are the factors and mechanisms that induce microbe protection from bactericidal action of humoral and cell factors of innate host immunity, which effect the organism of animals in different ways, stimulating pro- or anti-inflammatory reaction of a host to the infection, and contribute to the shift of bacterial life cycle inside the host, providing for the transfer from intracellular propagation in phagocytes at early stages to extracellular propagation in lymph node, spleen, liver and blood at later stages. Discussed are only those factors of Y. pestis the interaction of which with host molecules and cells at different stages of infectious process in case of bubonic plague is experimentally proved

    Recent Developments of NEMO: Detection of Solar Eruptions Characteristics

    Full text link
    The recent developments in space instrumentation for solar observations and telemetry have caused the necessity of advanced pattern recognition tools for the different classes of solar events. The Extreme ultraviolet Imaging Telescope (EIT) of solar corona on-board SOHO spacecraft has uncovered a new class of eruptive events which are often identified as signatures of Coronal Mass Ejection (CME) initiations on solar disk. It is evident that a crucial task is the development of an automatic detection tool of CMEs precursors. The Novel EIT wave Machine Observing (NEMO) (http://sidc.be/nemo) code is an operational tool that detects automatically solar eruptions using EIT image sequences. NEMO applies techniques based on the general statistical properties of the underlying physical mechanisms of eruptive events on the solar disc. In this work, the most recent updates of NEMO code - that have resulted to the increase of the recognition efficiency of solar eruptions linked to CMEs - are presented. These updates provide calculations of the surface of the dimming region, implement novel clustering technique for the dimmings and set new criteria to flag the eruptive dimmings based on their complex characteristics. The efficiency of NEMO has been increased significantly resulting to the extraction of dimmings observed near the solar limb and to the detection of small-scale events as well. As a consequence, the detection efficiency of CMEs precursors and the forecasts of CMEs have been drastically improved. Furthermore, the catalogues of solar eruptive events that can be constructed by NEMO may include larger number of physical parameters associated to the dimming regions.Comment: 12 Pages, 5 figures, submitted to Solar Physic

    The Role of the Yersiniachelin Siderophore in the Physiology of <i>Yersinia pestis</i>

    Get PDF
    Pathogenic bacteria use low-molecular-weight iron chelators – siderophores – to assimilate iron in the host body. Being recognized as virulence factors, these molecules, differing in structural and functional properties, are the subject of the most intensive research in medical microbiology. The present study is devoted to the investigation of yersiniachelin siderophore (Ych) found in the causative agent of plague, Yersinia pestis. The aim of the work was to clarify the role of Ych in the physiology of Y. pestis by comparing the properties of three strains of the plague microbe, differing in Ych production. Materials and methods. Three variants of Y. pestis EV76 strain were used in the experiments: parent strain Y. pestis EV76, its mutant that does not produce Ych due to deletion of three siderophore biosynthesis genes (analogues of ypo1530–1532 in Y. pestis CO92 strain) and a complemented mutant that was transformed by a recombinant pSC-A-5EV plasmid containing Ych biosynthesis genes cloned into the high-copy plasmid vector pSC-A-amp/kan. Comparative analysis of the three strains was carried out in terms of colony morphology, siderophore activity, growth rate, and sensitivity to hydrogen peroxide. Results and discussion. The comparison of these strains has revealed that the secretion of Ych by bacteria at 26 °С ensures the assimilation of iron. At 37 °С, Ych is not secreted into the medium and protects bacteria from the bactericidal action of reactive oxygen compounds. Thus, the study shows that yersiniachelin is able to stimulate the assimilation of iron by bacteria under iron-deficit conditions and has antioxidant properties

    Quiet Sun coronal heating: analyzing large scale magnetic structures driven by different small-scale uniform sources

    Get PDF
    Recent measurements of quiet Sun heating events by Krucker and Benz (1998) give strong support to Parker's (1988) hypothesis that small scale dissipative events make the main contribution to the quiet heating. Moreover, combining their observations with the analysis by Priest et al. (2000), it can be concluded that the sources driving these dissipative events are also small scale sources, typically of the order of (or smaller than) 2000 km and the resolution of modern instruments. Thus arises the question of how these small scale events participate into the larger scale observable phenomena, and how the information about small scales can be extracted from observations. This problem is treated in the framework of a simple phenomenological model introduced in Krasnoselskikh et al. (2001), which allows to switch between various small scale sources and dissipative processes. The large scale structure of the magnetic field is studied by means of Singular Value Decomposition (SVD) and a derived entropy, techniques which are readily applicable to experimental data.Comment: 9 pages, 9 figure

    Bacterial Siderophores: Structure, Functions, and Role in the Pathogenesis of Infections

    Get PDF
    This review systematizes and analyzes the data published over the past decade, devoted to the study of low-molecular-weight high affinity iron chelators – siderophores. Siderophores, which are found in bacteria, fungi and mammals, are able to extract iron from insoluble inorganic compounds, and in the host organism – from complexes with proteins that perform the function of nonspecific protection of mammals from infections. The extracted iron is delivered to cells through surface protein receptors specific for each siderophore, as well as various protein transport systems that make up membranes. Siderophores play an important role in virulence in pathogenic bacteria, performing many functions in the host organism, in addition to providing microbes with iron and other biological metals. They participate in the storage of excess iron, toxic to cells, protect bacteria from reactive oxygen compounds, compete for iron with phagocytes, and have a harmful effect on host cells, acting as secreted bacterial toxin in some cases. Bacterial siderophores perform a signaling function and regulate both, their own synthesis and the synthesis of other virulence factors. Many pathogenic bacteria produce several siderophores that are active under different conditions, against various sources of iron in the host organism and at different stages of infectious process. The review presents the results of the experimental studies aimed at elucidating the structure and diverse functions of bacterial siderophores, the mechanisms of their biosynthesis and regulation of expression, as well as the role of these molecules in the physiology and virulence of pathogenic bacteria. Special emphasis is put on siderophores of bacteria causing particularly dangerous infections

    Quiet Sun coronal heating: statistical model

    Get PDF
    Recent observations of Krucker & Benz (1998) give strong support to Parker's hypothesis (Parker 1988) that small scale dissipative events make the main contribution to quiet Sun coronal heating. They also showed that these small scale events are associated not only with the magnetic network, but also with the cell interiors (Benz & Krucker, 1998). Taking into account in addition the results of the analysis performed by Priest with co-authors (Priest et al. 2000) who demonstrated that the heating is quasi-homogeneous along the arcs we come to the conclusion that the sources driving these dissipative events are also small scale sources. Typically they are of the order of or smaller than the linear scale of the events observed, that is smaller than 2000 km. To describe statistical properties of quiet Sun corona heating by microflares, nanoflares, and even smaller events, we consider a cellular automata model subject to uniform small scale driving and dissipation. The model consists of two elements, the magnetic field source supposed to be associated with the small scale hydrodynamic turbulence convected from the photosphere and local dissipation of small scale currents. The dissipation is assumed to be provided by either anomalous resistivity, when the current density exceeds a certain threshold value, or by the magnetic reconnection. The main problem considered is how the statistical characteristics of dissipated energy flow depend upon characteristics of the magnetic field source and on physical mechanism responsible for the magnetic field dissipation. As the threshold value of current is increased, we observe the transition from Gaussian statistics to power-law type. In addition, we find that the dissipation provided by reconnection results in stronger deviations from Gaussian distribution.Comment: 14 pages, 12 figures, submitted to A&

    THE ROLE OF YERSINIA PESTIS RESIDENT PLASMIDS PMT1, PCD1, AND PPCP1 IN THE PRODUCTION OF LIPOPOLYSACCHARIDE EXTRACELLULAR FORM

    Get PDF
    Objective of the study is to investigate the role of resident plasmids pMT1, pCD1, and pPCP1 in the production of extracellular form of Yersinia pestis lipopolysaccharide (LPS).Materials and methods. The experiments have been performed using Y. pestis strain EV76 (pMT1, pCD1, pPCP1), carrying the whole plasmid set, as well as plasmid-free Y. pestis variant EV76 (pMT1-, pCD1-, pPCP1-), and isogenic clones, harbouring only one plasmid: Y. pestis EV76 (pMT1); Y. pestis EV76 (pCD1); Y. pestis EV76 (pPCP1). The presence of extracellular LPS in the incubation medium of Y. pestis EV76 cells has been confirmed by supernatant toxicity for laboratory animals and also by LAL-test reaction.Results and conclusions. It has been established that LPS extracellular form is produced by 37 °C Y. pestis EV76 cultures of the initial strain and its variants, carrying pMT1 or pPCP1 plasmid. Plasmid-free cultures and variant harbouring pCPP1 plasmid are deprived of such ability. The results of LAL-test has shown that the process of LPS separation from cell wall membrane into the environment is associated with translocation of proteins encoded by pMT1 and pCD1 plasmids and constitutes a natural form of existence of Y. pestis cells. The involvement of pCD1 plasmid in realization of the toxic potential of Y. pestis LPS has been established for the first time ever

    The dependence of the EIT wave velocity on the magnetic field strength

    Full text link
    "EIT waves" are a wavelike phenomenon propagating in the corona, which were initially observed in the extreme ultraviolet (EUV) wavelength by the EUV Imaging Telescope (EIT). Their nature is still elusive, with the debate between fast-mode wave model and non-wave model. In order to distinguish between these models, we investigate the relation between the EIT wave velocity and the local magnetic field in the corona. It is found that the two parameters show significant negative correlation in most of the EIT wave fronts, {\it i.e.}, EIT wave propagates more slowly in the regions of stronger magnetic field. Such a result poses a big challenge to the fast-mode wave model, which would predict a strong positive correlation between the two parameters. However, it is demonstrated that such a result can be explained by the fieldline stretching model, \emph{i.e.,} that "EIT waves" are apparently-propagating brightenings, which are generated by successive stretching of closed magnetic field lines pushed by the erupting flux rope during coronal mass ejections (CMEs).Comment: 11 pages, 8 figures, accepted for publication in Solar Phy

    Large-scale Bright Fronts in the Solar Corona: A Review of "EIT waves"

    Full text link
    ``EIT waves" are large-scale coronal bright fronts (CBFs) that were first observed in 195 \AA\ images obtained using the Extreme-ultraviolet Imaging Telescope (EIT) onboard the \emph{Solar and Heliospheric Observatory (SOHO)}. Commonly called ``EIT waves", CBFs typically appear as diffuse fronts that propagate pseudo-radially across the solar disk at velocities of 100--700 km s1^{-1} with front widths of 50-100 Mm. As their speed is greater than the quiet coronal sound speed (csc_s\leq200 km s1^{-1}) and comparable to the local Alfv\'{e}n speed (vAv_A\leq1000 km s1^{-1}), they were initially interpreted as fast-mode magnetoacoustic waves (vf=(cs2+vA2)1/2v_{f}=(c_s^2 + v_A^2)^{1/2}). Their propagation is now known to be modified by regions where the magnetosonic sound speed varies, such as active regions and coronal holes, but there is also evidence for stationary CBFs at coronal hole boundaries. The latter has led to the suggestion that they may be a manifestation of a processes such as Joule heating or magnetic reconnection, rather than a wave-related phenomena. While the general morphological and kinematic properties of CBFs and their association with coronal mass ejections have now been well described, there are many questions regarding their excitation and propagation. In particular, the theoretical interpretation of these enigmatic events as magnetohydrodynamic waves or due to changes in magnetic topology remains the topic of much debate.Comment: 34 pages, 19 figure

    What is the Nature of EUV Waves? First STEREO 3D Observations and Comparison with Theoretical Models

    Full text link
    One of the major discoveries of the Extreme ultraviolet Imaging Telescope (EIT) on SOHO were intensity enhancements propagating over a large fraction of the solar surface. The physical origin(s) of the so-called `EIT' waves is still strongly debated. They are considered to be either wave (primarily fast-mode MHD waves) or non-wave (pseudo-wave) interpretations. The difficulty in understanding the nature of EUV waves lies with the limitations of the EIT observations which have been used almost exclusively for their study. Their limitations are largely overcome by the SECCHI/EUVI observations on-board the STEREO mission. The EUVI telescopes provide high cadence, simultaneous multi-temperature coverage, and two well-separated viewpoints. We present here the first detailed analysis of an EUV wave observed by the EUVI disk imagers on December 07, 2007 when the STEREO spacecraft separation was 45\approx 45^\circ. Both a small flare and a CME were associated with the wave cadence, and single temperature and viewpoint coverage. These limitations are largely overcome by the SECCHI/EUVI observations on-board the STEREO mission. The EUVI telescopes provide high cadence, simultaneous multi-temperature coverage, and two well-separated viewpoints. Our findings give significant support for a fast-mode interpretation of EUV waves and indicate that they are probably triggered by the rapid expansion of the loops associated with the CME.Comment: Solar Physics, 2009, Special STEREO Issue, in pres
    corecore